menu search
brightness_auto
more_vert
The sum of the first three terms of a G.P. is S and their product is 27. Then all such S lie in

(1) $(–\infty,\ –3] \cup [9,\ \infty)$

(2) $(–\infty,\ –9] \cup [3,\ \infty)$

(3) $[–3,\ \infty)$

(4) $(–\infty,\ 9]$
thumb_up_off_alt 3 like thumb_down_off_alt 0 dislike

2 Answers

more_vert
 
verified
Best answer

Ans. (1) $(-\infty,-3]\cup[9,\infty)$

Sol. Let terms are $a\over r$, a, ar

then a3 = 27 $\implies$ a = 3

Now $3\over r$ + 3 + 3r = S

$3\left({1\over r}+r\right)+3=S$

$r+{1\over r}\geq2$

$3\left({1\over r}+r\right)+3\in(-\infty,-3]\cup[9,\infty)$

thumb_up_off_alt 0 like thumb_down_off_alt 0 dislike
more_vert
option A is the answer for this question asked in jee mains 2020 september shift 2
thumb_up_off_alt 0 like thumb_down_off_alt 0 dislike
more_vert
Are you sure Shift 2?
Should I change the tag to shift 2 or the tag is right?

Welcome to Jee Neet QnA, where you can ask questions and receive answers from other members of the community.


Join Our Telegram Group For Live Discussion.

Telegram Group

1.1k questions

777 answers

375 comments

80 users

...