Let $0<\theta<{\pi\over2}$. If the eccentricity of the hyperbola ${x^2\over\cos^2\theta}-{y^2\over\sin^2\theta}=1$ is greater than 2, then the length of its latus rectum lies in the interval :

(1) $(2,3]$

(2) $(3,\infty)$

(3) $(3/2,2]$

(4) $(1,3/2]$

(1) $(2,3]$

(2) $(3,\infty)$

(3) $(3/2,2]$

(4) $(1,3/2]$