menu search
Feel free to answer or ask any questions.
If you are new here please see how to use or FAQ.
Some drops, each of radius ‘r’ coalesce to form a large drop of radius ‘R’. The surface tension is T. Find the change in surface energy per unit volume.

(a) $T\left({1\over r}-{1\over R}\right)$

(b) $3T\left({1\over r}-{1\over R}\right)$

(c) $3T\left({1\over R}-{1\over r}\right)$

(d) $T\left({1\over R}-{1\over r}\right)$

1 Answer

Best answer

Answer: (b) $3T\left({1\over r}-{1\over R}\right)$


Radius of small drop is r and radius of big drop is R.

When they coalesce, the volume will the same before and after coalesce.

${4\over3}\pi R^3=n.{4\over3}\pi r^3=\text{volume }(V)$


The surface area of large drop is $4πR^2$ and surface area of small drop is $4πr^2$


$∆U\ -$ change in surface energy

$∆A\ -$ Change in surface area

$T\ -$ surface tension

Then, $∆U=T.∆A$

$∆U=T(4\pi R^2-4\pi r^2)$

$∆U={3T\over3}\left({4\pi R^3\over R}-{4\pi r^3\over r}\right)$

$∆U=3T\left({{4\pi R^3\over3}\over R}-{{4\pi r^3\over3}\over r}\right)$

$∆U=3T\left({V\over R}-{V\over r}\right)$

$\left|{∆U\over V}\right|=3T\left({1\over r}-{1\over R}\right)$

thumb_up_off_alt 0 like thumb_down_off_alt 0 dislike

Welcome to Jee Neet QnA, where you can ask questions and receive answers from other members of the community.

Join our Telegram group for live discussion.

Telegram Group

Subscribe our YouTube channel for video solutions with explanation.

YouTube Channel

Download Jee Neet QnA Books in PDF for offline learning.

Jee Neet QnA Books

1.2k questions

844 answers


139 users