(a) $T\left({1\over r}-{1\over R}\right)$
(b) $3T\left({1\over r}-{1\over R}\right)$
(c) $3T\left({1\over R}-{1\over r}\right)$
(d) $T\left({1\over R}-{1\over r}\right)$
Answer: (b) $3T\left({1\over r}-{1\over R}\right)$
Solution:
Radius of small drop is r and radius of big drop is R.
When they coalesce, the volume will the same before and after coalesce.
${4\over3}\pi R^3=n.{4\over3}\pi r^3=\text{volume }(V)$
$R=n^{1\over3}r\quad\quad....(1)$
The surface area of large drop is $4πR^2$ and surface area of small drop is $4πr^2$
Let
$∆U\ -$ change in surface energy
$∆A\ -$ Change in surface area
$T\ -$ surface tension
Then, $∆U=T.∆A$
$∆U=T(4\pi R^2-4\pi r^2)$
$∆U={3T\over3}\left({4\pi R^3\over R}-{4\pi r^3\over r}\right)$
$∆U=3T\left({{4\pi R^3\over3}\over R}-{{4\pi r^3\over3}\over r}\right)$
$∆U=3T\left({V\over R}-{V\over r}\right)$
$\left|{∆U\over V}\right|=3T\left({1\over r}-{1\over R}\right)$