For the reaction, $X_2O_{4(l)} \to 2XO_{2(g)}$
$\Delta U$ = 2.1 kcal, $ΔS$ = 20 cal K-1 at 300 K
Hence, $ΔG$ is
(a) 2.7 kcal
(b) - 2.7 kcal
(c) 9.3 kcal
(d) - 9.3 kcal
Ans: (b) - 2.7 kcal
Sol: $ΔH = ΔU + Δn_g RT$
Given, $ΔU = 2.1 kcal, Δn_g = 2,$
$R = 2 × 10^{-3} kcal, T = 300 K$
$∴ ΔH = 2.1 + 2 × 2 × 10^{-3} × 300 = 3.3 kcal$
Again, $ΔG = ΔH - TΔS$
Given, $ΔS = 20 × 10^{-3} kcal K^{-1}$
On putting the values of $ΔH$ and $ΔS$ in the equation,
we get
$ΔG = 3.3 - 300 × 20 × 10^{-3}$
$= 3.3 - 6 × 10^3 × 10^{-3} = - 2.7 kcal$