menu search
Feel free to answer or ask any questions.
If you are new here please see how to use or FAQ.

Two masses m and $m\over2$ are connected at the two ends of a massless rigid rod of length $l$. The rod is suspended by a thin wire of torsional constant k at the centre of mass of the rod-mass system(see figure). Because of torsional constant k, the restoring torque is $\tau=k\theta$ for angular displacement 0. If the rod is rotated by θ0 and released, the tension in it when it passes through its mean position will be: 

(1) $3k\theta_0^2\over l$

(2) $k\theta_0^2\over2l$

(3) $2k\theta_0^2\over l$

(4) $k\theta_0^2\over l$

1 Answer

Best answer

Ans: (4) $k\theta_0^2\over l$

Sol: $\omega=\sqrt{k\over I}$

$\omega=\sqrt{3k\over ml^2}$

$\Omega = \omega\theta_0 =$ average velocity

$T = m\Omega^2r_1$

$T = m\Omega^2{l\over3}$


$=m{3k\over ml^2}\theta_0^2{l\over3}$

$={k\theta_0^2\over l}$

$I=\mu l^2={{m^2\over2}\over{3m\over2}}l^2$


${r_1\over r_2}={1\over2}\implies r_1={l\over3}$

thumb_up_off_alt 1 like thumb_down_off_alt 0 dislike

Welcome to Jee Neet QnA, where you can ask questions and receive answers from other members of the community.

Join our Telegram group for live discussion.

Telegram Group

Subscribe our YouTube channel for video solutions with explanation.

YouTube Channel

Download Jee Neet QnA Books in PDF for offline learning.

Jee Neet QnA Books

1.2k questions

842 answers


110 users