menu search
brightness_auto
Feel free to answer or ask any questions.
If you are new here please see how to use or FAQ.
more_vert

The integral $\int\limits_0^2{||x-1|-x|dx}$ is equal to :

Numerical Value Type

1 Answer

more_vert
 
verified
Best answer

Ans. (01.50)

Sol. $\int\limits_0^2{||x-1|-x|dx}=\int\limits_0^1{|1-x-x|dx}+\int\limits_1^2{|x-1-x|dx}$

$=\int\limits_0^{1/2}{(1-2x)dx}+\int\limits_{1/2}^1{(2x-1)dx}+\int\limits_1^2{dx}$

$=\Big[x-x^2\Big]_0^{1\over2}+\Big[x^2-x\Big]_{1\over2}^1+\big[x\big]_1^2$

$={1\over2}-{1\over4}+(1-1)-\left({1\over4}-{1\over2}\right)+2-1$

$={1\over4}+{1\over4}+1={3\over2}$

thumb_up_off_alt 0 like thumb_down_off_alt 0 dislike
more_vert
Can we solve this by graph
more_vert
Yes you can

Welcome to Jee Neet QnA, where you can ask questions and receive answers from other members of the community.


Join our Telegram group for live discussion.

Telegram Group

Subscribe our YouTube channel for video solutions with explanation.

YouTube Channel

Download Jee Neet QnA Books in PDF for offline learning.

Jee Neet QnA Books

1.2k questions

842 answers

384 comments

92 users

...