Let $\vec{a}$, $\vec{b}$ and $\vec{c}$ be three unit vectors such that $|\vec{a}-\vec{b}|^2+|\vec{a}-\vec{c}|^2=8$. Then $|\vec{a}+2\vec{b}|^2+|\vec{a}+2\vec{c}|^2$ is equal to :
Numerical Value Type
If you are commenting for the first time, please read the guidelines.
If you are answering for the first time, please read the guidelines.
Ans. (02.00)
Sol. $|\vec{a}|=|\vec{b}|=|\vec{c}|=1$
$|\vec{a}-\vec{b}|^2+|\vec{a}-\vec{c}|^2=8$
$\implies \vec{a}.\vec{b}+\vec{a}.\vec{c}=-2$
Now $|\vec{a}+2\vec{b}|^2+|\vec{a}+2\vec{c}|^2=2|\vec{a}|^2+4|\vec{b}|^2+4|\vec{c}|^2+4(\vec{a}.\vec{b}+\vec{a}.\vec{c})=2$
1.1k questions
772 answers
366 comments
77 users