menu search
brightness_auto
Feel free to answer or ask any questions.
If you are new here please see how to use or FAQ.
more_vert
A parallel plate capacitor is made of two square plates of side 'a', separated by a distance d (d<<a). The lower triangular portion is filled with a dielectric of dielectric constant K, as shown in the figure.

Capacitance of this capacitor is :

(1) ${1\over2}{k\in_0a^2\over d}$

(2) ${k\in_0a^2\over d}\ln K$

(3) ${k\in_0a^2\over d(K-1)}\ln K$

(4) ${k\in_0a^2\over 2d(K+1)}$

1 Answer

more_vert
 
verified
Best answer

Ans: (3) ${k\in_0a^2\over d(K-1)}\ln K$

Sol: 

${y\over x}={d\over a}$

$y={d\over a}x$

$\mathrm dy={d\over a}(\mathrm dx)$

${1\over\mathrm dc}={y\over KE.adx}+{(d-y)\over\in_0adx}$

${1\over\mathrm dc}={1\over\in_0adx}\left({y\over K}+d-y\right)$

$\int \mathrm dc=\int{\in_0adx\over{y\over K}+d-y}$

$c=\in_0a.{a\over d}\int\limits_0^d{dy\over d+y\left({1\over k}-1\right)}$

$={\in_0a^2\over\left({1\over k}-1\right)d}\left[\ln\left(d+y\left({1\over k}-1\right)\right)\right]_0^d$

$={k\in_0a^2\over(1-k)d}\ln\left({d+d\left({1\over k}-1\right)\over d}\right)$

$={k\in_0a^2\over(1-k)d}\ln\left({1\over k}\right)$

$={k\in_0a^2\over d(K-1)}\ln K$

thumb_up_off_alt 1 like thumb_down_off_alt 0 dislike

Welcome to Jee Neet QnA, where you can ask questions and receive answers from other members of the community.


Join our Telegram group for live discussion.

Telegram Group

Subscribe our YouTube channel for video solutions with explanation.

YouTube Channel

Download Jee Neet QnA Books in PDF for offline learning.

Jee Neet QnA Books

1.2k questions

844 answers

385 comments

139 users

...