menu search
Feel free to answer or ask any questions.
If you are new here please see how to use or FAQ.
If the tangent to the curve y = x + siny at a point (a, b) is parallel to the line joining $\left(0,{3\over2}\right)$ and $\left({1\over2},2\right)$, then

(1) |b – a| = 1

(2) $b={\pi\over2}+a$

(3) |a + b| = 1

(4) b = a

1 Answer

Best answer

Ans. (1) |b – a| = 1

Sol. y = x + siny

${dy\over dx}={1\over1-\cos y}={{1\over2}-0\over2-{3\over2}}=1$

$\implies$ cos y = 0

$\implies y = (2n + 1){\pi\over2}$

Point lie on curve b = a + sin y

b – a = sin y

|b – a| = 1

thumb_up_off_alt 1 like thumb_down_off_alt 0 dislike

Welcome to Jee Neet QnA, where you can ask questions and receive answers from other members of the community.

Join our Telegram group for live discussion.

Telegram Group

Subscribe our YouTube channel for video solutions with explanation.

YouTube Channel

Download Jee Neet QnA Books in PDF for offline learning.

Jee Neet QnA Books

1.2k questions

842 answers


110 users